Hand Posture Classification and Recognition using the Modified Census Transform

ثبت نشده
چکیده

Developing new techniques for human-computer interaction is very challenging. Vision-based techniques have the advantage of being unobtrusive and hands are a natural device that can be used for more intuitive interfaces. But in order to use hands for interaction, it is necessary to be able to recognize them in images. In this paper, we propose to apply to the hand posture classification and recognition tasks an approach that has been successfully used for face detection [3]. The features are based on the Modified Census Transform and are illumination invariant. For the classification and recognition processes, a simple linear classifier is trained, using a set of feature lookup-tables. The database used for the experiments is a benchmark database in the field of posture recognition. Two protocols have been defined. We provide results following these two protocols for both the classification and recognition tasks. Results are very encouraging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

Hand Posture Recognition Using Adaboost with SIFT for Human Robot Interaction

Hand posture understanding is essential to human robot interaction. The existing hand detection approaches using a Viola-Jones detector have two fundamental issues, the degraded performance due to background noise in training images and the in-plane rotation variant detection. In this paper, a hand posture recognition system using the discrete Adaboost learning algorithm with Lowe’s scale invar...

متن کامل

Hand Posture Classification by Means of a New Contour Signature

This paper deals with hand posture recognition. Thanks to an adequate setup, we afford a database of hand photographs. We propose a novel contour signature, obtained by transforming the image content into several signals. The proposed signature is invariant to translation, rotation, and scaling. It can be used for posture classification purposes. We generate this signature out of photographs of...

متن کامل

The Enhancement of Low-level Classifications in Sequential Syntactic High-level Classifiers

This paper surveys a new research field of object behavior classification using sequential syntactic pattern recognition, which recognizes high-level object behaviors while in parallel recovering from low-level object recognition classification errors. A new approach of syntactical object behavior classification with a robust implementation is introduced. It is an innovative approach that requi...

متن کامل

A New Compositional Technique for Hand Posture Recognition

A new compositional technique for hand posture recognition is described. Compositional methods are a powerful approach in image understanding. Most papers using this concept address image categorization problems. We recently propose a hand pose recognition method using the compositional approach. In this paper we present further development of our method and new results. Key-Words: compositiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007